Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Young binary systems offer a unique opportunity to study the fragility of circumstellar disks in dynamically tumultuous environments. In this talk, I will present preliminary ALMA continuum and 12CO emission for several systems, including the puzzling DF Tau. DF Tau is a close visual binary with a semi-major axis of only 14 AU; we find circumstellar disks around both the primary and secondary star. Other disk signatures, i.e. accretion measurements and H-band veiling, indicate only a disk around the primary star. Because the two stars likely formed together, with the same composition, in the same environment, and at the same time, we expect their disks to be co-eval. However the absence of an inner disk around the secondary suggests uneven dissipation. We resolve this contradiction by proposing that the inner disk of DF Tau B is, at minimum, beyond ~0.06 AU and consider several processes which have the potential to accelerate inner disk evolution.more » « less
-
Abstract We present a study connecting the physical properties of protostellar envelopes to the morphology of the envelope-scale magnetic field. We used the Atacama Large Millimeter/submillimeter Array (ALMA) polarization observations of 61 young protostars at 0.87 mm on ~400–3000 au scales from theB-field Orion Protostellar Survey to infer the envelope-scale magnetic field, and we used the dust emission to measure the envelope properties on comparable scales. We find that protostars showing standard hourglass magnetic field morphology tend to have larger masses, and the nonthermal velocity dispersion is positively correlated with the bolometric luminosity and dust temperature of the envelope. Combining with the disk properties taken from the Orion VLA/ALMA Nascent Disk and Multiplicity survey, we connect envelope properties to fragmentation. Our results show a positive correlation between the fragmentation level and the angle dispersion of the magnetic field, suggesting that the envelope fragmentation tends to be suppressed by the magnetic field. We also find that protostars exhibiting standard hourglass magnetic field structure tend to have a smaller disk and smaller angle dispersion of the magnetic field than other field configurations, especially the rotated hourglass, but also the spiral and others, suggesting a more effective magnetic braking in the standard hourglass morphology of magnetic fields. Nevertheless, significant misalignment between the magnetic field and outflow axes tends to reduce magnetic braking, leading to the formation of larger disks.more » « lessFree, publicly-accessible full text available February 24, 2026
-
Abstract This article presents the latest results of our Atacama Large Millimeter/submillimeter Array (ALMA) program to study circumstellar disk characteristics as a function of orbital and stellar properties in a sample of young binary star systems known to host at least one disk. Optical and infrared observations of the eccentric, ∼48 yr period binary DF Tau indicated the presence of only one disk around the brighter component. However, our 1.3 mm ALMA thermal continuum maps show two nearly equal-brightness components in this system. We present these observations within the context of updated stellar and orbital properties, which indicate that the inner disk of the secondary is absent. Because the two stars likely formed together, with the same composition, in the same environment, and at the same time, we expect their disks to be co-eval. However the absence of an inner disk around the secondary suggests uneven dissipation. We consider several processes that have the potential to accelerate inner disk evolution. Rapid inner disk dissipation has important implications for planet formation, particularly in the terrestrial-planet-forming region.more » « less
-
Abstract High-resolution, millimeter observations of disks at the protoplanetary stage reveal substructures such as gaps, rings, arcs, spirals, and cavities. While many protoplanetary disks host such substructures, only a few at the younger protostellar stage have shown similar features. We present a detailed search for early disk substructures in Atacama Large Millimeter/submillimeter Array 1.3 and 0.87 mm observations of ten protostellar disks in the Ophiuchus star-forming region. Of this sample, four disks have identified substructure, two appear to be smooth disks, and four are considered ambiguous. The structured disks have wide Gaussian-like rings (σR/Rdisk∼ 0.26) with low contrasts (C< 0.2) above a smooth disk profile, in comparison to protoplanetary disks where rings tend to be narrow and have a wide variety of contrasts (σR/Rdisk∼ 0.08 andCranges from 0 to 1). The four protostellar disks with the identified substructures are among the brightest sources in the Ophiuchus sample, in agreement with trends observed for protoplanetary disks. These observations indicate that substructures in protostellar disks may be common in brighter disks. The presence of substructures at the earliest stages suggests an early start for dust grain growth and, subsequently, planet formation. The evolution of these protostellar substructures is hypothesized in two potential pathways: (1) the rings are the sites of early planet formation, and the later observed protoplanetary disk ring–gap pairs are secondary features, or (2) the rings evolve over the disk lifetime to become those observed at the protoplanetary disk stage.more » « less
-
Abstract Close binary systems present challenges to planet formation. As binary separations decrease, so do the occurrence rates of protoplanetary disks in young systems and planets in mature systems. For systems that do retain disks, their disk masses and sizes are altered by the presence of the binary companion. Through the study of protoplanetary disks in binary systems with known orbital parameters, we seek to determine the properties that promote disk retention and therefore planet formation. In this work, we characterize the young binary−disk system FO Tau. We determine the first full orbital solution for the system, finding masses of and 0.34 ± 0.05M⊙for the stellar components, a semimajor axis of au, and an eccentricity of . With long-baseline Atacama Large Millimeter/submillimeter Array interferometry, we detect 1.3 mm continuum and12CO (J= 2–1) line emission toward each of the binary components; no circumbinary emission is detected. The protoplanetary disks are compact, consistent with being truncated by the binary orbit. The dust disks are unresolved in the image plane, and the more extended gas disks are only marginally resolved. Fitting the continuum and CO visibilities, we determine the inclination of each disk, finding evidence for alignment of the disk and binary orbital planes. This study is the first of its kind linking the properties of circumstellar protoplanetary disks to a precisely known binary orbit. In the case of FO Tau, we find a dynamically placid environment (coplanar, low eccentricity), which may foster its potential for planet formation.more » « less
-
Abstract We present a statistical characterization of circumstellar disk orientations toward 12 protostellar multiple systems in the Perseus molecular cloud using the Atacama Large Millimeter/submillimeter Array at Band 6 (1.3 mm) with a resolution of ∼25 mas (∼8 au). This exquisite resolution enabled us to resolve the compact inner-disk structures surrounding the components of each multiple system and to determine the projected 3D orientation of the disks (position angle and inclination) to high precision. We performed a statistical analysis on the relative alignment of disk pairs to determine whether the disks are preferentially aligned or randomly distributed. We considered three subsamples of the observations selected by the companion separationsa< 100 au,a> 500 au, anda< 10,000 au. We found for the compact (<100 au) subsample, the distribution of orientation angles is best described by an underlying distribution of preferentially aligned sources (within 30°) but does not rule out distributions with 40% misaligned sources. The wide companion (>500 au) subsample appears to be consistent with a distribution of 40%–80% preferentially aligned sources. Similarly, the full sample of systems with companions (a< 10,000 au) is most consistent with a fractional ratio of at most 80% preferentially aligned sources and rules out purely randomly aligned distributions. Thus, our results imply the compact sources (<100 au) and the wide companions (>500 au) are statistically different.more » « less
-
The majority of Sun-like stars form with binary companions, and their dynamical impact profoundly shapes the formation and survival of their planetary systems. Demographic studies have shown that close binaries (a < 100 au) have suppressed planet-occurrence rates compared to single stars, yet a substantial minority of planets do form and survive at all binary separations. To identify the conditions that foster planet formation in binary systems, we have obtained high-angular-resolution, mm interferometry for a sample of disk-bearing binary systems with known orbital solutions. In this poster, we present the case study of a young binary system, FO Tau (a ~ 22 au). Our ALMA observations resolve dust continuum (1.3 mm) and gas (CO J=2-1) from each circumstellar disk allowing us to trace the dynamical interaction between the binary orbit and the planet-forming reservoir. With these data we determine individual disk orientations and masses, while placing these measurements in the context of a new binary orbital solution. Our findings suggest that the FO Tau system is relatively placid, with observations consistent with alignment between the disks and the binary orbital plane. We compare these findings to models of binary formation and evolution, and their predictions for disk retention and planet formation.more » « less
-
ABSTRACT Polarization is a unique tool to study the dust grains of protoplanetary discs. Polarization around HL Tau was previously imaged using the Atacama Large Millimeter/submillimeter Array (ALMA) at Bands 3 (3.1 mm), 6 (1.3 mm), and 7 (0.87 mm), showing that the polarization orientation changes across wavelength λ. Polarization at Band 7 is predominantly parallel to the disc minor axis but appears azimuthally oriented at Band 3, with the morphology at Band 6 in between the two. We present new ∼0.2 arcsec (29 au) polarization observations at Q-Band (7.0 mm) using the Karl G. Jansky Very Large Array (VLA) and at Bands 4 (2.1 mm), 5 (1.5 mm), and 7 using ALMA, consolidating HL Tau’s position as the protoplanetary disc with the most complete wavelength coverage in dust polarization. The polarization patterns at Bands 4 and 5 follow the previously identified morphological transition with wavelength. From the azimuthal variation, we decompose the polarization into contributions from scattering (s) and thermal emission (t). s decreases slowly with increasing λ, and t increases more rapidly which are expected from optical depth effects of toroidally aligned scattering prolate grains. The weak λ dependence of s is inconsistent with the simplest case of Rayleigh scattering by small grains in the optically thin limit but can be affected by factors such as optical depth, disc substructure, and dust porosity. The sparse polarization detections from the Q-band image are also consistent with toroidally aligned prolate grains.more » « less
-
Abstract We present 870μm polarimetric observations toward 61 protostars in the Orion molecular clouds with ∼400 au (1″) resolution using the Atacama Large Millimeter/submillimeter Array. We successfully detect dust polarization and outflow emission in 56 protostars; in 16 of them the polarization is likely produced by self-scattering. Self-scattering signatures are seen in several Class 0 sources, suggesting that grain growth appears to be significant in disks at earlier protostellar phases. For the rest of the protostars, the dust polarization traces the magnetic field, whose morphology can be approximately classified into three categories: standard-hourglass, rotated-hourglass (with its axis perpendicular to outflow), and spiral-like morphology. A total of 40.0% (±3.0%) of the protostars exhibit a mean magnetic field direction approximately perpendicular to the outflow on several × 102–103au scales. However, in the remaining sample, this relative orientation appears to be random, probably due to the complex set of morphologies observed. Furthermore, we classify the protostars into three types based on the C17O (3–2) velocity envelope’s gradient: perpendicular to outflow, nonperpendicular to outflow, and unresolved gradient (≲1.0 km s−1arcsec−1). In protostars with a velocity gradient perpendicular to outflow, the magnetic field lines are preferentially perpendicular to outflow, with most of them exhibiting a rotated hourglass morphology, suggesting that the magnetic field has been overwhelmed by gravity and angular momentum. Spiral-like magnetic fields are associated with envelopes having large velocity gradients, indicating that the rotation motions are strong enough to twist the field lines. All of the protostars with a standard-hourglass field morphology show no significant velocity gradient due to the strong magnetic braking.more » « less
An official website of the United States government

Full Text Available